Fermi Surface Evolution Across Multiple CDW Transitions in RTe$_3$

R.G. MOORE, Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, CA 94025, V. BROUET, Laboratoire de Physique des Solides, Université Paris-Sud, Bat 510, UMR 8502, 91405 Orsay, France, J. LAVEROCK, S. DUGDALE, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom, R. HE, N. RU, I.R. FISHER, Z.-X. SHEN, Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, CA 94305 — The Fermi surface (FS) evolution across multiple charge density wave (CDW) transitions is investigated using angle-resolved photoemission spectroscopy. Low temperature measurements reveal two incommensurate CDW gaps created by perpendicular FS nesting vectors. A larger gap (\sim250 meV) arising from a CDW with $q_{CDW} \sim 0.7c^*$ is in good agreement with the expected trend determined from light rare earth members of the bi-layer family of rare earth tritelluride compounds (RTe$_3$). A second, smaller gap (\sim50 meV) is due to a second CDW with $q_{CDW} \sim 0.7a^*$ never before seen in other RTe$_3$ compounds. The temperature dependence of the FS and the two CDW gaps is characterized.

1Work supported by DOE Office of Science, Division of Materials Science, with contract DE-FG03-01ER45929-A001 and NSF grant DMR-0604701.