Abstract Submitted for the MAR08 Meeting of The American Physical Society

Raman electronic paramagnetic resonance (Raman-EPR) of Cr³⁺ in ruby¹ X. LU, Purdue University, S. VENUGOPALAN, SUNY, Binghamton, HYUNJUNG KIM, Sogang Univ. Korea, M. GRIMSDITCH, Argonne National Lab., S. RODRIGUEZ, A.K. RAMDAS, Purdue University — We have observed the Raman-EPR of the Zeeman split ${}^{4}A_{2}$ ground state of the Cr³⁺ ion in Al₂O₃:Cr, i.e., ruby, exploiting the resonance conditions associated with the R_1 line. Employing a tunable dye laser with a photon energy E_L in the vicinity of the Zeeman components of the R₁ luminescence, we observe the Stokes and anti-Stokes Raman transitions with shifts corresponding to the intra ${}^{4}A_{2}$ ground state levels split by the external magnetic field (**B**). The proximity of the incident and the scattered radiation to the Zeeman components of R₁ leads to selective dramatic resonance enhancements of the intensities of EPR transitions brought about as a function of **B** and E_L . The microscopic mechanism for the resonance enhancement involves the 'in resonance' and 'out resonance' conditions fulfilled by the virtual transitions from the sublevels of ${}^{4}A_{2}$ ground state to the sublevels of ${}^{2}E$ by the incident and the scattered radiation in a two step process. Raman-EPR of the Zeeman sublevels of ²E excited state of R_1 is also observed.

¹Work supported by NSF (DMR 0405082 and 0705793).

A.K. Ramdas Purdue University

Date submitted: 30 Nov 2007

Electronic form version 1.4