Abstract Submitted for the MAR08 Meeting of The American Physical Society

Magnetic phase separation in $LaMn_{1-x}Fe_xO_{3+y}^{-1}$ O.F. DE LIMA, Instituto de Fisica Gleb Wataghin, UNICAMP, Campinas, J.A.H. COAQUIRA, R.L. DE ALMEIDA, L.B. DE CARVALHO, S.K. MALIK, Centro Internacional de Fisica da Materia Condensada, UnB, Brasilia — We have investigated the $LaMn_{1-x}Fe_xO_{3+y}$ system in the whole range of $0 \le x \le 1$, for polycrystalline samples prepared by solid state reaction in air. All samples show orthorhombic structure (space group Pnma). For x=0 the oxygen excess, estimated to be $v \sim 0.1$, produces vacancies in the La and Mn sites and generates a fraction around 20% of Mn^{4+} ions $(3t_{2g})$ and 80% of the usual Mn³⁺ ions $(3t_{2g}, 1e_g)$, with possible double exchange interaction between them. The Fe-doping in this system is known to produce only stable Fe^{3+} ions $(3t_{2q}, 2e_q)$. We find an evolution from a fairly strong ferromagnetic (FM) behavior, with saturation magnetization (T=2K) $m_S \sim 4 \mu_B$ and Curie temperature $T_c \sim 160$ K, for x=0, to an antiferromagnetic (AFM) behavior, with $T_N=790$ K, for x=1. For intermediate Fe contents a mixed phase scenario occurs, with a gradual decrease (increase) of the FM (AFM) phase, accompanied by a systematic transition broadening for 0.2 < x < 0.7. A calculation based on the expected exchange interaction among the various magnetic-ion types, accounts very well for the m_S dependence on Fe doping.

¹We acknowledge the Brazilian agencies FAPESP, CNPq and CAPES

Oscar F. de Lima Instituto de Fisica Gleb Wataghin, UNICAMP, Campinas - Brasil

Date submitted: 30 Nov 2007

Electronic form version 1.4