Rate equation modeling of semiconductor spin-polarized lasers and diodes1 CHRISTIAN GOTHGEN, ATHOS PETROU, IGOR ZUTIC, SUNY Buffalo — Optically or electrically pumped spin-polarized carriers into semiconductor lasers can provide important advantages as compared to the conventional lasers in which the carriers are unpolarized. Motivated by recent experiments in spin-polarized lasers which demonstrate the feasibility of polarization modulation and threshold current reduction \cite{1,2}, we model these structures using rate equations. Our approach allows a direct comparison of the analytical and numerical results applied to the steady-state laser response. In the absence of material gain, our findings describe the behavior of spin-polarized diodes. We calculate the dependence of threshold reduction on the degree of pumped spin polarization and suggest how a change in the spin polarization could provide several useful device functionalities.

\begin{thebibliography}{9}
\bibitem{2} J. Rudolph et al., Appl. Phys. Lett. 82, 4516 (2003).
\end{thebibliography}

1Supported by the US ONR and NSC-ECCS CAREER.