Superfluidity of fermions with repulsive on-site interaction in an anisotropic optical lattice near a Feshbach resonance

BIN WANG, LUMING DUAN, University of Michigan, Ann Arbor — We present numerical analysis of ground state properties of the one-dimensional general Hubbard model (GHM) with particle assisted tunnelling rates and repulsive on-site interaction (positive-U), which describes fermionic atoms in an anisotropic optical lattice near a wide Feshbach resonance. Our calculation uses the time evolving block decimation algorithm, which is an extension of the density matrix renormalization group and provides a well controlled method for one-dimensional systems. We show that the positive-U GHM, when hole doped from half-filling, shows up a phase with coexistence of quasi-long-range superfluid and charge-density-wave orders. This feature is different from the property of the conventional Hubbard model with positive-U, indicting the particle assisted tunneling in the GHM could bring in qualitatively new physics.

This work was supported by the MURI, the DARPA, the NSF award(0431476), the DTO under ARO contracts, and the A. P. Sloan Fellowship.