Origin of glass transition temperature behavior in polymer nanocomposites

JAMIE KROPKA, VENKAT GANESAN, The University of Texas at Austin, PETER GREEN, The University of Michigan — Local composition variations inherent in multi-component materials, even when the material constituents are miscible, generally lead to heterogeneous behavior in the properties of mixtures relative to their single component counterparts. In contrast, experiments have suggested that some polymer nanocomposite materials exhibit changes in their bulk T_g without displaying excess heterogeneity in their dynamics, as measured mechanically, relative to the neat polymer. Incoherent neutron scattering measurements on materials that fit this description, C$_{60}$-PMMA mixtures, suggest that modifications of the polymer melt dynamics are limited to the vicinity of the particles. A model by which the localized modifications of polymer dynamics can account for the apparent homogeneous change in T_g is proposed to explain the experimental findings. Computations based on percolation theory support the model.

Jamie Kropka
The University of Texas at Austin

Date submitted: 26 Nov 2007

Electronic form version 1.4