Schroedinger Leopards in Bose-Einstein Condensates\textsuperscript{1} LINCOLN D. CARR, Department of Physics, Colorado School of Mines, DIMITRI R. DONAS-FRAZER, Department of Physics, University of California, Berkeley — We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well – a Schrodinger cat with spots. Such \textit{Schrodinger leopard} states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.

\textsuperscript{1}Funded by the National Science Foundation