Abstract Submitted for the MAR08 Meeting of The American Physical Society

Current-Flow-DrivenNonequi-librium Paramagentic-Ferromagnetic Phase Transitions¹ ADITI MITRA,
New York University, IGOR ALEINER, ANDREW MILLIS, Columbia University
— We study a 2d itinerant electron system near a ferromagnetic-paramagnetic quan-
tum critical point, which has been driven out of equilibrium by current flow through
its bulk. The lack of Galilean invariance in physically realistic models implies that
there is no co-moving frame of reference where the physics is identical to that in the
absence of current. In the vicinity of the equilibrium critical point the main effect
of current flow is shown to be an effective temperature, with current induced drift
giving subleading corrections. The current can also destabilize a classical order, and
may give rise to new kinds of ordered or quasi-ordered phases.

¹Supported by NSF-DMR 0705584.

Aditi Mitra New York University

Date submitted: 30 Nov 2007

Electronic form version 1.4