MgB$_2$: Novel properties due to multibands1

GIRSH BLUMBERG, Bell Laboratories, Alcatel-Lucent

About 40 years ago A.J. Leggett proposed a new collective mode arising from cross-tunneling of Cooper pairs residing on different Fermi surfaces of a multiband superconductor: Leggett’s collective mode is caused by a counter flow of the interacting superfluids leading to small fluctuations of the relative phase of the condensates while the total electron density is locally conserved.2 Here we present direct spectroscopic observation of the Leggett’s excitation in the MgB$_2$ superconductor containing two pairs of Fermi surfaces resulting from π- and σ-bands. Electronic Raman scattering studies have revealed three distinct superconducting (SC) features: (i) a clean threshold of Raman intensity at 4.6 meV consistent with the π-band SC gap; (ii) the SC pair breaking coherence peak at 13.5 meV consistent with excitations above the σ-band gap; and (iii) the SC collective mode at 9.4 meV which we assign to an excitation first discussed by Leggett.3 Our calculation of the Raman response function for MgB$_2$ superconductor based on multiband interaction matrices by first principle computations show good agreement with spectroscopic observations. The temperature and field dependencies for all three features (i) – (iii) have been established; the effects of magnetic field on the pair cross-tunneling in multiband system will be discussed. In addition, anharmonicity and superconductivity-induced self-energy effects for the E_{2g} boron stretching phonon have been studied.5 We show that anharmonic two-phonon decay is mainly responsible for the unusually large linewidth of the E_{2g} mode. We observe 2.5% hardening of the E_{2g} phonon frequency upon cooling into the SC state and estimate the electron-phonon coupling strength associated with this renormalization.

1In collaboration with A. Mialitsin, B.S. Dennis, M.V. Klein, N.D. Zhigadlo, and J. Karpinski.

