Abstract Submitted for the MAR08 Meeting of The American Physical Society

Effect of Ligand Molecular Weight and Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers JOSHUA PETRIE, UC Santa Barbara, BUMJOON KIM, UC Berkeley, GLENN FREDRICKSON, ED KRAMER, UC Santa Barbara — Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize in either domain of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density Σ of end-attached PS chains falls below a critical areal chain density Σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the Σc has been shown to scale as $\Sigma c \sim ((R+Rg)/(R*Rg))^2$, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for Σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on Σc as a function of R.

Joshua Petrie UCSB

Date submitted: 26 Nov 2007 Electronic form version 1.4