Abstract Submitted for the MAR08 Meeting of The American Physical Society

Ferromagnetism in Melt-spun $Gd_{0.946}Fe_{0.054}^{-1}$ PAUL SHAND, NICHOLAS JENSEN, JUSTIN BOHNET, University of Northern Iowa, JARED GOERTZEN, JEFFREY SHIELD, University of Nebraska-Lincoln, DAVID SCHMITTER, Providence College, GEOFFREY SHELBURNE, DIANDRA LESLIE-PELECKY, University of Nebraska-Lincoln — The ac susceptibility and dc magnetization at various temperatures have been measured for a melt-spun $Gd_{0.946}$ Fe_{0.054} alloy. The grain size was ≈ 100 nm. A sharp paramagnetic-to-ferromagnetic transition was observed at a temperature close to that of pure Gd. Effective critical exponents and the critical temperature T_C were extracted by using modified Arrott plots and Kouvel-Fisher analysis. The values obtained were $\beta_{eff} = 0.398$ ± 0.004 , $\gamma_{eff} = 1.24 \pm 0.02$, $\delta_{eff} = 3.83 \pm 0.05$, and $T_C = 290.25 \pm 0.17$ K. These exponent values do not satisfy the Widom scaling relation $\beta \delta = (\beta + \gamma)$. The β_{eff} and γ_{eff} values for ms-Gd_{0.946} Fe_{0.054} are similar to those obtained for pure Gd in the same temperature interval around T_C . This is in consonance with x-ray microanalysis measurements indicating that the grains are nearly pure Gd. The lower-than-expected value of δ_{eff} g may be due to the effect of increased anisotropy due to the presence of Fe in the grain-boundary regions.

¹Funded by NSF Grant Nos. DMR-0504177 and DMR-0504706

Paul Shand University of Northern Iowa

Date submitted: 26 Nov 2007 Electronic form version 1.4