Path integral studies of methane rotations in 4He clusters1 NIKO-LAY MARKOVSKIY, CHI MAK, University of Southern California — Path integral simulations have been carried out to study the rotations of a methane inside a single shell of 4He atoms at 0.3 K to address the question of whether dopant molecule rotations can be used to probe the quantum statistics and superfluidity of the shell. We examined the effects of the probe molecule on the 4He exchanges and their counter effects on the renormalized rotation constant of the probe systematically by varying the intrinsic moment of inertia of the methane. The observed effects show strong dependence on the intrinsic moment of inertia of the rotating probe, with a heavy probe favoring stronger templating of the 4He density and a corresponding suppression of exchanges in the shell, as well as a large renormalization in the probe's effective rotation constant, while a light probe shows almost no effect on the shell density or the effective rotation constant. These results can be rationalized in terms of a rotational smearing effect and suggest that there is no clearly quantifiable relationship between the superfluid fraction of the shell and the renormalized rotation constant of the probe for cases where the probe molecule has weak anisotropic interactions with the 4He atoms.

1National Science Foundation

Nikolay Markovskiy
University of Southern California

Date submitted: 27 Nov 2007
Electronic form version 1.4