The role of metal/transition metal oxide/organic interface

CHANG-TING LIN, GUAN-RU LEE, CHIH-I WU, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Republic of China, TUN-WEN PI, National Synchrotron Radiation Research Center, Hsinchu, Taiwan 300, Republic of China — In this paper, we report a study with UPS and XPS data of metal/transition-metal-oxide/organic interfaces. Transition metal oxides are widely used in organic light-emitting (OLEDs) in recently years, such as WO$_3$, ReO$_3$, MoO$_3$, and V$_2$O$_5$. These metal oxides have been proven to be good hole injection layers in OLEDs, interlayers in tandem OLEDs, and nanocomposite electrodes. Although a large number of studies have been made, little is known about the mechanism of metal/transition-metal-oxide/organic interfaces. UPS and XPS data performed by synchrotron radiation research show that these oxides would catch electrons from organic and results in p-type doping in organic material. In addition, there is a significant structure transition from insulating metal oxide to metallic metal oxide. As a result of high work function metallic metal oxides in anode structures and p-type doping organic hole transport layers (HTLs), holes can easily be injected from anode to HTLs. Current-voltage characteristics (I-V) and quantum-efficiency (η-J) measurements also show the improvement of device performance with insertion of thin transition metal oxides between anodes HTLs.

Chang-Ting Lin
Graduate Institute of Photonics and Optoelectronics,
National Taiwan University, Taipei, Taiwan 10617, Republic of China

Date submitted: 02 Dec 2007
Electronic form version 1.4