Abstract Submitted for the MAR08 Meeting of The American Physical Society

Intrinsic spin-Hall effect in the presence of an in-plane magnetic field¹ LUYAO WANG, CHONSAAR CHU, National Chaio Tung University, ANA-TOLY MALSHUKOV, Russian Academy of Sciences, Institute of Spectroscopy — The intrinsic spin-Hall effect (SHE) induced by a driving electric field E_x in the presence of an in-plane magnetic field \vec{B} in a 2D semiconductor strip is studied. In the diffusive regime, the spatial distribution of spin densities S_i (i=x, y, z) is calculated from a spin diffusion equation derived from nonequilibrium Green's function. For the case of Rashba spin-orbit interaction (SOI), we find that the spin polarization S_z normal to the 2D strip remains zero with or without the in-plane magnetic field. For the case of Dresselhaus SOI, where cubic term is included, the symmetry of S_z with respect to the in-plane magnetic field depends on the orientation of the \vec{B} field. With \vec{B} along \hat{x} , S_z exhibits symmetric dependence on $B\hat{x}$. However, with a transverse in-plane magnetic field, along \hat{y} , at the edge of the strip exhibits asymmetric dependence on $B\hat{y}$. These results lead to a possible diagnostic tool for the identification of the SOI in the system.

¹National Science Council of ROC, NSC95-2112-M009-004.

Luyao Wang National Chaio Tung University

Date submitted: 02 Dec 2007

Electronic form version 1.4