Scaling Exponents for Polymer Translocation through a Nanopore

KAIFU LUO, TAPIO ALA-NISSILA, Helsinki University of Technology, PAWEL POMORSKI, MIKKO KARTTUNEN, University of Western Ontario, SEE-CHEN YING, Brown University, ANIKET BHATTACHARYA, University of Central Florida — We present results of extensive computer simulations and scaling theory for computing the relevant scaling exponents associated with polymer translocation through a nanopore [1]. We present results for the scaling of the average translocation time and the fluctuation in the reaction coordinate for the case of spontaneous and field-driven translocation in 2D and 3D. The models used include: (i) the fluctuating bond model with single-segment Monte Carlo moves, (ii) Langevin dynamics, and (iii) GROMACS MD simulations using the bead-spring model for flexible polymers without an explicit solvent. We contrast our results to the recently presented alternate theories for polymer translocation [2,3].


Tapio Ala-Nissila
Helsinki University of Technology

Date submitted: 27 Nov 2007

Electronic form version 1.4