Absence of magnetic field ($B \leq 33 \, \text{T}$) induced effects in the mid-infrared properties of $\text{La}_{2-x} \text{Sr}_x \text{CuO}_4$ films with $0 \leq x \leq 0.16$. S.V. DORDEVIC, L.W. KOHLMAN, The University of Akron, A. GOZAR, G. LOGVENOV, I. BOZOVIĆ, Brookhaven National Lab, L.C. TUNG, Y.-J. WANG, National High Magnetic Field Lab — We have performed magneto-transmission measurements on a series of $\text{La}_{2-x} \text{Sr}_x \text{CuO}_4$ films with magnetic fields up to 18 Tesla. Studied samples include doping levels $x= 0, 0.1, 0.3, 0.45, 0.6, 0.8, 0.10$. In addition, an optimally doped film ($x= 0.16$) was studied in magnetic fields as high as 33 Tesla, both below and above its superconducting critical temperature $T_c= 41 \, \text{K}$. In neither of the studied samples we could detect any field-induced changes of transmission in the mid-infrared energy range (between about 1000 and 3500 cm$^{-1}$). We discuss how these observations can enhance our current understanding of medium energy range excitations in the cuprates, and their relation to high temperature superconductivity.

S.V. Dordevic
The University of Akron

Date submitted: 27 Nov 2007
Electronic form version 1.4