Abstract Submitted for the MAR08 Meeting of The American Physical Society

Valence Instability and Mass Enhancement in an Extended Periodic Anderson Model TAKASHI SUGIBAYASHI, YASUHIRO SAIGA, DAI HIRASHIMA, Nagoya University — In CeCu₂Si₂, CeCu₂Ge₂ and CeRh_{1-x}Ir_xIn₅, the shape of the superconducting region is asymmetric and the superconducting transition temperature T_c reaches its maximum far away from the antiferromagnetic quantum critical point. Onishi and Miyake ascribed the asymmetric behavior of T_c to the enhanced valence fluctuations. They introduced the repulsive interaction U_{cf} between a conduction electron and an f electron, in addition to the Coulomb interaction U between f electrons and studied the periodic Anderson model (PAM) with both U and U_{cf} (which is the so-called extended PAM). We investigated the valence instability in the extended PAM and two-fold degenerate extended PAM with the dynamical mean field theory. In these models, we found that the valence instability is observed when U_{cf} is larger than the conduction band width 2W and the f-electron level ϵ_f is deeper than the lower bound of the conduction band, -W. It is also found that the orbital degeneracy suppresses the valence instability. In the parameter region of inducing the valence instability, we investigate the mass enhancement factor Z_f^{-1} which is related to the specific heat.

> Takashi Sugibayashi Nagoya University

Date submitted: 27 Nov 2007

Electronic form version 1.4