MAR08-2007-004161

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

Domain Coarsening and Aging in Dislocation Glasses GERGELY ZIMANYI, Physics Department, UC Davis

Dislocation systems were analyzed numerically with 1 and 3 glide axes, at T=0 and T>0, with and without climb. [1] Dislocation free domains formed even without shear, defined by dislocation rich domain walls. The domain formation was most pronounced in the presence of climb, somewhat counter-intuitively. The stability of domains was analyzed. The microscopic processes suppressing the climb-induced decay of domain walls were identified. The dislocation dynamics at low temperatures was markedly glassy. <u>Aging</u>: Dislocations with glide only support minimal domain formation. The autocorrelation function showed aging, scaling with the waiting time as: $C(t,t_w) = C_{eq}(t) C(t/t_w^{\mu})$ and $C_{eq}(t) \sim t^{-\beta}$, with $\mu=0.65$ and $\beta=0.54$. <u>Freezing</u>: The effective diffusion constant decayed to zero as: $D(t)_{eff} \sim t^{-\gamma}$, with $\gamma=0.8$. <u>Coarsening</u>: Dislocations with glide and climb exhibited profound domain formation, the domains coarsening as L(t): $L(t) \sim t^{1/z}$, with 1/z=0.17. The formation of domains without shear has been recently observed in GaAs by Rudolph and in dusty plasmas by Quinn and Joree. The domain coarsening was quantitatively captured in di-block copolymers [2], with 1/z=0.19, in good agreement with our results.

B. Bako, G. Groma, G. Gyorgyi and G.T. Zimanyi, Phys. Rev. Lett. 98, 075701 (2007).
P. Chaikin's talk, same session.