Abstract Submitted for the MAR08 Meeting of The American Physical Society

Thermodynamic and magnetic studies of novel spin ice materials¹ M.L. DAHLBERG, X. KE, B.G. UELAND², P. SCHIFFER, Department of Physics and Materials Research Institute, Pennsylvania State University, D.V. WEST, R.J. CAVA, Department of Chemistry and Princeton Materials Institute, Princeton University — We report systematic low temperature measurements of the dc magnetization, ac susceptibility, and heat capacity of $Dy_2Sn_{2-x}Sb_xO_{7+x/2}$ (x=0, 0.25, and 0.5), and Dy_2NbScO_7 . We find evidence for Ising-like single ion ground states in the $Dy_2Sn_{2-x}Sb_xO_{7+x/2}$ materials, and these materials possess nearly the same zeropoint entropy as the canonical spin ices $Ho_2Ti_2O_7$ and $Dy_2Ti_2O_7$. These results strongly suggest that the $Dy_2Sn_{2-x}Sb_xO_{7+x/2}$ materials studied have spin-ice states at low temperatures despite the cation disorder on the B sites of the pyrochlore lattice We also observe a somewhat reduced zero-point entropy in Dy_2NbScO_7 , which is possibly associated with a higher level of cation disorder

¹NSF Grant No. DMR-0353610 ²Now at NIST, Gaithersburg, MD

> M.L. Dahlberg Dept of Physics and Materials Research Institute, Pennsylvania State University

Date submitted: 19 Dec 2007

Electronic form version 1.4