Chirality Sum Rule in Graphene Multilayers1 HONGKI MIN, AL-LAN H. MACDONALD, The University of Texas at Austin — We show that the low energy electronic structure of arbitrarily stacked graphene multilayers with nearest-neighbor interlayer tunneling consists solely of chiral pseudospin doublets. Although the number of doublets in an \(N\)-layer system depends on the stacking sequence, the pseudospin chirality sum is always \(N\). It follows that \(N\)-layer stacks always have \(N\) distinct Landau levels at \(E = 0\) for each spin and valley, and that the quantized Hall conductivity \(\sigma_{xy} = \pm(4e^2/h)(N/2 + n)\) where \(n\) is a non-negative integer.

1This work was supported by the Welch Foundation, by NSF-NRI SWAN, and by the National Science Foundation under grant DMR-0606489.

Hongki Min
The University of Texas at Austin

Date submitted: 04 Dec 2007
Electronic form version 1.4