Abstract Submitted for the MAR08 Meeting of The American Physical Society

¹⁷O Nuclear Magnetic Resonance Chemical Shielding Calculations of PZT Solid Solutions¹ DANIEL L. PECHKIS², ERIC J. WALTER, HENRY KRAKAUER, College of William and Mary — First principles B3LYP calculations of ¹⁷O NMR in PbTiO₃, Pb(Zr₁Ti₁)O₃ (PZT), and PbZrO₃ will be presented. These systems were modeled with finite size quantum clusters embedded in point charge arrays. The embedding reproduces the Ewald Coulomb potential to better simulate the crystal environment.³ For polar systems, the calculations were performed in the presence of an external electric field to cancel surface depolarization effects.⁴ PZT was modeled using three chemically ordered structures: P4mm, P2mm, and R3m. Two groupings of ¹⁷O isotropic chemical shifts δ_{iso} are seen in all of our PZT calculations with [001] ordering. One is at $\delta_{iso} \approx 400$ ppm and the other is at $\delta_{iso} \approx 650$ ppm. We relate these to variations in the Ti-O and Zr-O bond lengths and use this to interpret recent experimental measurements.⁵

¹Supported by ONR
²Supported by Virginia Space Grant Consortium Fellowship
³M. K. Klintenberg, S. E. Derenzo, and M. J. Weber. Comput. Phys. Commun.131, 120, (2000).
⁴S. Li and K. Rabe. APS March Meeting abstract (2007).
⁵A. Baldwin, P.A. Thomas and R. Dupree, J. Phys: Cond. Matt. 17, 7159 (2005).

Daniel L. Pechkis College of William and Mary

Date submitted: 27 Nov 2007

Electronic form version 1.4