Abstract Submitted for the MAR08 Meeting of The American Physical Society

Reentrant electromagnons in multiferroic $Eu_{0.75}Y_{0.25}MnO_3$ in the H-T phase diagram¹ ROLANDO VALDES AGUILAR, A.B. SUSHKOV, H.D. DREW, MRSEC, Department of Physics. University of Maryland, College Park, MD 20742, Y.J. CHOI, C. ZHANG, S-W. CHEONG, Rutgers University, Piscataway, NJ 08854 — The electromagnon spectra of $Eu_{0.75}Y_{0.25}MnO_3$ has been measured as a function of magnetic field $H \parallel c$ up to 8 T and temperature between 5 and 300 K. Three magnetic induced electric dipole features reported earlier² are observed to weaken simultaneously but not shift for increasing field. These electromagnon features all show reentrant behavior as a function of temperature for H > 6 T, and track with the anomalies in the static dielectric constant, confirming their electromagnon origin. While the magnetic structure of $Eu_{0.75}Y_{0.25}MnO_3$ is unknown, it is assumed that it is a cycloidal magnet where the spins lie in the crystallographic a-b plane, based on the behavior of the magnetic susceptibility and the direction of static polarization **P**. Therefore, it appears that the electromagnon selection rule, $e \parallel a$, in all the multiferroic RMnO₃ manganites is independent of the spin plane and polarization direction. We will compare the phase diagrams of $Eu_{0.75}Y_{0.25}MnO_3$ and TbMnO₃ where similar anomalies are observed.

 1 Work supported by NSF-MRSEC under grant DMR-0520471 2 Valdes Aguilar, et al. PRB **76**, 060404(R) (2007)

Rolando Valdes Aguilar

Date submitted: 27 Nov 2007

Electronic form version 1.4