Abstract Submitted for the MAR08 Meeting of The American Physical Society

Static dipole polarizabilities of icosahedral fullerenes from C_{60} to C_{2160} by all-electron density-functional theory RAJENDRA ZOPE, TUNNA BARUAH, University of Texas at El Paso, MARK PEDERSON, Naval Research Laboratory, BRETT DUNLAP, Naval Research Laboratory — The electronic response of C₆₀, C₁₈₀, C₂₄₀, C₅₄₀, C₇₂₀, C₉₆₀, C₁₅₀₀, and C₂₁₆₀ fullerenes is characterized by determining their static dipole polarizabilities by all-electron densityfunctional theory. We first determine the dipole polarizabilities of C_{60} , C_{180} , C_{240} , and C_{540} fullerenes by the finite-field method, using 35 basis functions per atom (NRLMOL basis set), and using the PBE-GGA. In the second set of calculations the sum-over-states (SOS) polarizabilities for all fullerenes from C_{60} through C_{2160} are determined by our fully analytic formulation of density functional theory(ADFT). The 6-311G(d,p) basis set is used in the ADFT calculation, which amounts to 38800 basis functions for the largest fullerene in this series, namely C_{2160} . The SOS polarizabilities are roughly 4 times larger than the finite-field polarizabilities. When scaled by a correction factor obtained within linear response theory, the SOS polarizabilities are within 1-3% of the finite-field polarizabilities. The polarizability per carbon atom increases from 1.34 Å³ in C₆₀ to 4 Å³ in C₂₁₆₀ while the ratio of fullerene polarizability to its volume approaches unity pointing to quenching of quantum size effects by C_{2160} . The results show previous tight-binding calculations greatly exaggerate the electronic response of large fullerenes.

> Rajendra Zope University of Texas at El Paso

Date submitted: 27 Nov 2007

Electronic form version 1.4