O$_2$ Dissociative Adsorption on Cu$_2$O(100) with O Vacancies1 DUY LE, SERGEY STOLBOV, TALAT RAHMAN, University of Central Florida — Cu$_2$O surfaces and nanoparticles have been shown to have high activity for CO oxidation [1]. As a result of consumption of the surface oxygen during the CO oxidation process on Cu$_2$O(100), the issue of restoration of the surface composition becomes critical. Through first principles electronic structure calculations of the geometry, activation energy barriers, reaction pathways, and the local densities of electronic states for O$_2$ dissociative adsorption on the Cu$_2$O(100) surface with O vacancies, we show that the healing of oxygen vacancies is accompanied by reconstruction of the surface. Our calculations are based on density functional theory in the generalized gradient approximation and usage of ultrasoft pseudopotential method in the plane wave representation. [1] B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. S. Rahman, N. Turro, and S. O’Brien, Nano Lett., 6, 2095 (2006).

1Work supported in part by DOE under Grant No. DE-FG02-07ER15842. Computational resources: TeraGrid grant No: DMR050039N.