Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Theory of Collinear ordering on the Kagome Lattice of Zn-paratacamite† LARS FRITZ, Harvard University, MICHAEL LAWLER, YONG-BAEK KIM, University of Toronto, SUBIR SACHDEV, Harvard University — We present a theory of the collinearly ordered phase discovered in a recent neutron scattering experiment [1] on Zn-paratacamite, Zn$_2$Cu$_{4-x}$(OH)$_6$Cl$_2$, at small x. Zn-paratacamite has been considered as an excellent model system for the kagome lattice of spin-1/2 moments with antiferromagnetic exchange interactions. We studied both the classical and quantum Heisenberg models on the distorted kagome lattice appropriate for Zn-paratacamite with small x. Our theory naturally explains the emergence of a Néel phase. A theory for the Valence-Bond Solid phase also discovered in this experiment is presented in a related contributed talk.

†NSF grant No. DMR 0537077; DFG FR 2627/1-1 ; KRF-2005-070-C00044