Abstract Submitted for the MAR08 Meeting of The American Physical Society

Electrical activation studies of Al_{0.4}Ga_{0.6}N and Al_{0.5}Ga_{0.5}N implanted with silicon for n-type doping. ELIZABETH MOORE, YUNG KEE YEO, Air Force Institute of Technology, MEE-YI RYU, Kangwon National University, ROBERT HENGEHOLD, Air Force Institute of Technology — A systematic electrical activation study of Si-implanted $Al_xGa_{1-x}N$ with Al concentrations of 40 and 50% grown on sapphire substrates by MEMOCVD has been made as a function of ion dose and anneal temperature. The silicon ions were implanted at 200 keV with doses from $1x10^{14}$ to $1x10^{15}$ cm⁻² at room temperature. The samples were proximity cap annealed from 1150 to 1350 °C for 20 minutes in a nitrogen environment. Hall-effect measurements were made from 10 to 700 K and cathodoluminescence measurements were taken at 7 K. Electrical activations of nearly 100% were obtained for the Al_{0.4}Ga_{0.6}N:Si after annealing at 1350 °C for 20 minutes for doses of $1x10^{14}$ and $5x10^{14}$ cm⁻² and after annealing at 1200 °C for 20 minutes for the dose of 1x10¹⁵ cm⁻². The Al_{0.5}Ga_{0.5}N:Si also had high activations of nearly 100% for the two lower doses after annealing at 1300 °C for 20 minutes, while for a dose of $1x10^{15}$ cm⁻², an activation of 66% was obtained after the same annealing treatment. The highest room temperature mobility for the Al_{0.4}Ga_{0.6}N and Al_{0.5}Ga_{0.5}N samples are 61 and 55 cm²/V·s, respectively for the samples annealed at 1350 °C for 20 minutes. CL spectra support the electrical results in determining the optimal annealing conditions.

> Elizabeth Moore Air Force Institute of Technology

Date submitted: 27 Nov 2007 Electronic form version 1.4