Extreme electron-phonon coupling in magnetic rubidium sesquioxide

ROBERT DE GROOT, Rijksuniversiteit Groningen, JISK ATTEMA, Radboud University, S. RIYADI, GREAME BLAKE, Rijksuniversiteit Groningen, GILLES DE WIJS, Radboud University, THOMAS PALSTRA, Rijksuniversiteit Groningen — Rb$_2$O$_3$ is a black, opaque oxide. Early work suggests that the stability range of the sesquioxide phase in the rubidium-oxygen phase diagram is rather broad. Rb$_2$O$_3$ remains cubic down to the lowest temperature measured (5 K). The oxygens form dumbbells with interatomic distances in between those of peroxide and superoxide anions, and strong athermal motion persists down to low temperatures. [1] Electronic-structure calculations show that the dynamics at low temperature is caused by 6 phonon modes of zero frequency, which induce a very strong electron-phonon interaction. The softness of half of these modes is suppressed by the application of pressure. Calculated using the average oxygen positions, rubidium sesquioxide is a half-metallic ferromagnet. [2]

Gilles de Wijs
Radboud University

Date submitted: 19 Dec 2007