Experimental Measurement of Ultrafast Carrier Dynamics in Mono- and Multi-layer Graphene Samples

DAOHUA SONG, KIN FAI MAK, YANG WU, CHUN HUNG LUI, Columbia University, MATTHEW SFEIR, Brookhaven National Laboratory, SAMI ROSENBLATT, HUGEN YAN, JANINA MAULTZSCH, TONY HEINZ, Columbia University — The ultrafast dynamics of charge carriers in mono- and multi-layer graphene was investigated by femtosecond transient reflectivity measurements. The experiments were performed using 100-fs optical pump pulses at a wavelength of 400 nm and probe pulses at a wavelength of 800 nm. We observed a transient response on the time scale of several picoseconds. For bulk graphite, a decay time of ~ 3 ps was found; for thin graphene multilayer samples, a reduced decay time was observed, dropping ultimately to ~ 1 ps for a single graphene layer. The reflectivity transients can be understood in terms of coupling of the photo-generated electronic excitations to optical phonons, and the subsequent loss of energy from this sub-system. The possible role of graphene interactions with the quartz substrate and the effect of the graphene electronic specific heat on the decay rate will be discussed.

Kin Fai Mak
Columbia University

Date submitted: 27 Nov 2007