Preparation and Characterization of Ta_2O_5–CeO_2 Films

DURSEN SAYGIN HINCZEWSKI, Istanbul Technical University (I.T.U.), KENAN KOC, Yildiz Technical Univ., IDRIS SORAR, I.T.U., MICHAEL HINCZEWSKI, TUBITAK Bosphorus Univ. Feza Gursey Institute, FATMA Z. TEPEHAN, I.T.U., GALIP G. TEPEHAN, Kadir Has Univ. — Ta_2O_5 films have been widely studied due to their chemical and thermal stability, high dielectric constant and refractive index. It is known, for certain composites of Ta_2O_5–TiO_2, Ta_2O_5–Al_2O_3, and Ta_2O_5–ZrO_2 polycrystalline ceramics, that there is a significant increase in the dielectric constant compared to pure Ta_2O_5; this has stimulated research of doped thin films of Ta_2O_5. In this study [1], the sol-gel spin coating method has been used to make Ta_2O_5–CeO_2 thin films. These films have been prepared in various composition ratios to observe changes in their surface morphology, optical and structural properties. Reflectance and transmittance spectra were collected in the spectral range of 300-1000 nm, and were accurately fit using the Tauc-Lorentz model. Film thicknesses, refractive indices, absorption coefficients, and optical band gaps were extracted from the theoretical fit. The highest refractive index value was found at 5% CeO_2-doping. The structure of the films was characterized by XRD and FTIR spectrometry, while the surface morphology was examined through AFM. [1] D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, F.Z. Tepehan, and G.G. Tepehan, Sol. Energy Mater. Sol. Cells 91, 1726 (2007).