Abstract Submitted for the MAR08 Meeting of The American Physical Society

Electric Field and Frequency Dependence of the Dielectric Storage, Loss, and Conductivity of Multi-Wall Carbon Nanotubes RAJRATAN BASU, GERMANO IANNACCHIONE, Worcester Polytechnic Institute — The dielectric storage (ϵ') and loss (ϵ'') of the complex dielectric constant (ϵ *) are reported for multi-wall carbon nanotubes (MWCNT) up to 10⁵ Hz as a function of ac-electric field amplitude E_{rot} (in-phase and same frequency as the measurement) and E_{ac} (fixed phase and frequency with respect to the measurement). A slow relaxation process (mode-1) is observed that increases in peak frequency with increasing E_{rot} but is independent of E_{ac} . A fast relaxation process (mode-2) is also observed that is independent of E_{rot} and shifts to higher frequency with increasing E_{ac} (opposite to that seen for mode-1). A conductivity analysis of MWCNT reveals possible mechanisms for how E_{rot} and E_{ac} can effect the dielectric dissipation differently.

> Germano Iannacchione Worcester Polytechnic Institute

Date submitted: 27 Nov 2007

Electronic form version 1.4