Density Functional Study of the Photodetachment Spectra of Zinc and Calcium Cluster Anions.1 YAFEI DAI, E. BLAISTEN-BAROJAS, Computational Materials Science Center, George Mason University, Fairfax, VA —

The structure and electronic states of zinc cluster anions Zn_2 through Zn_9 and calcium cluster anions from Ca_2 through Ca_{19} were optimized within the hybrid density functional approach. Based on these results, the photoelectron detachment spectra of Zn_2 through Zn_6 and of Ca_2 through Ca_6 anions were determined. Additionally, the electron affinity of Zn_N (N up to 9) and of Ca_N (N up to 19) was calculated within the same approximation. Both the calculated electron affinities and theoretical photoelectron binding energies are in very good agreement with experiment. Theoretical predictions for Zn_3, Ca_2 and Ca_4 anions display additional electron detachment binding energies that are not present in the published experimental data.

1Acknowledgment: Grant Teragrid PHY050026

Estela Blaisten-Barojas
Computational Materials Science Center,
George Mason University, MSN 6A2, Fairfax, VA

Date submitted: 02 Jan 2008