Abstract Submitted for the MAR08 Meeting of The American Physical Society

Influence of a Parallel Magnetic Field on the Microwave-Induced Resistance and Photovoltaic Oscillations CHI ZHANG, KRISTJAN STONE, RUI-RUI DU, Rice University, CHANGLI YANG, Institute of Physics, CAS, China, LOREN PFEIFFER, KEN WEST, Bell Labs, Alcatel-Lucent — Microwave induced photovoltaic (PV) and resistance oscillations (MIRO) were studied in high-mobility $(\mu > 8 \times 10^6 \text{ cm}^2/\text{V s})$ 2D electron gas in GaAs/Al_xGa_{1-x}As Hall bar samples employing a two-axis magnet system (perpendicular field B_{\perp} and parallel field B//). Consistent with the previous results, strong MIRO were observed and were found to diminish under a $B// \sim 1$ T. We observed two types of PV oscillations: 1) PV oscillations that are periodic in $1/B_{\perp}$, with a periodicity similar to MIRO, but are anti-symmetric with respect to $B_{\perp} = 0$; and, 2) PV oscillations due to edge magnetoplasmon modes, which are periodic in B_{\perp} and are symmetric with respect to B_{\perp} = 0. Characteristically, the $1/B_{\perp}$ oscillations in PV were completely suppressed by a $B// \sim 1$ T, whereas the B_{\perp} -periodic oscillations retain their main features even in B//=2 T. Experimental data and a brief discussion will be presented. The work at Rice was supported by NSF DMR-0706634.

> Chi Zhang Rice University

Date submitted: 27 Nov 2007

Electronic form version 1.4