Abstract Submitted for the MAR08 Meeting of The American Physical Society

Magnetic and Thermal Properties of the Spin S = 1/2 Zig-Zag Spin Chain Compound In₂VO₅ * YOGESH SINGH, DAVID JOHNSTON, Ames Laboratory — The structure of In_2VO_5 consists of zig-zag V⁴⁺ (spin S = 1/2) chains along the *b*-axis. Prior to our work, there were two theoretical reports on this material.^{1,2} One report suggested that the nearest-neighbor and next-nearestneighbor interactions between the V⁴⁺ moments would be anti-ferromagnetic and frustrated,¹ while the second report suggested that both these interactions should be ferromagnetic.² An experimental study of the physical properties of this material had not been reported. We measured magnetic susceptibility χ , ac susceptibility χ_{ac} and specific heat C versus temperature T on In_2VO_5 and χ and C versus T on the isostructural, nonmagnetic compound $In_2 TiO_5$. The $\chi(T)$ data for $In_2 VO_5$ showed that the dominant magnetic exchange between the V⁴⁺ moments was ferromagnetic above 150 K. However, the $\chi(T)$ and the frequency dependence of the $\chi_{ac}(T)$ data indicate that below 3 K the system is in a spin-glass state indicating the presence of disorder and frustrated interactions at these temperatures. Our C and entropy Sdata suggest that there may be a structural change below 140 K in In_2VO_5 which could possibly change the interactions between the V^{4+} moments. 1. I. M. Volkova, J. Phys.: Condens. Matter 19, 176208 (2007). 2. U. Schwingenschlogl, Phys. Rev. B 75, 212408 (2007).

*Supported by the USDOE under Contract No. DE-AC02-07CH11358.

Yogesh Singh Ames Laboratory

Date submitted: 19 Dec 2007

Electronic form version 1.4