Z-scan measurement of oriented Au nanoparticle suspensions1
PIOTR LESIAK, Warsaw University of Technology, MICHELE MOREIRA, PETER PALFFY-MUHORAY, Liquid Crystal Institute, KSU, NICKOLAS KOTOV, ASHISH AGARWAL, University of Michigan — The Z-scan technique, developed by the CREOL group1, is a simple and effective method for measuring intensity dependent optical nonlinearities of materials. We have carried out Z-scan measurements of gold nanorods suspended in organic solvents using a CW laser. A low frequency external electric field was used to orient the nanoparticles2. We present our experimental results for the real and imaginary parts of the nonlinear phase shift as function of the applied aligning electric field. We consider a variety of possible contributing physical mechanisms, and compare their expected contributions with experimental observations. [1] M. Sheik, A.A. Said, and E.W. Van Stryland, \textit{Opt. Lett.} \textbf{14}, 955 (1989). [2] J. Fontana, and P. Palffy-Muhoray, APS March meeting 2008, New Orleans, LA (2008).

1This work was supported by the AFOSR under MURI grant FA9550-06-1-0337.