muSR study on quasi-one-dimensional cobalt/rhodium oxides
PETER RUSSO, TRIUMF, JUN SUGIYAMA, H. NOZAKI, Y. IKEDO, K. MUKAI, Toyota CRDL, T. TAKAMI, University of Texas at Austin, H. IKUTA, DANIEL ANDREICA, ALEX AMATO, LMU-PSI — Thanks to the unique power of muon-spin spectroscopy, we found that the quasi-one-dimensional Co-Rh oxides $A_{n+2}\text{CoRh}_n\text{O}_{3n+3}$ ($A = \text{Ca}, \text{Sr}; n = 1, 2, \text{and} 3$) exhibit a two-dimensional antiferromagnetic transition that ranges from $T_{N}^{n=1}=185$ K for $n=1$ to 125 K for $n=3$ with a transition width (ΔT) of about 80 K. The variation of T_{N}^{n} with n is explained by the increase in the distance between the neighboring CoRh$_n$O$_{3n+3}$ chains. Static magnetic order is observed below the endpoint of T_{N} ($=T_{N}^{n=3}-\Delta T$) for each of the three samples. The existence of the two-frequency components in the ZF-spectrum indicates the appearance of ferrimagnetic order for $\text{Ca}_3\text{CoRhO}_6$ below 20 K.

Peter Russo
TRIUMF

Date submitted: 27 Nov 2007

Electronic form version 1.4