Abstract Submitted for the MAR08 Meeting of The American Physical Society

Infrared spectroscopy of Dysprosium doped KPb₂Br₅ and KPb₂Cl₅. PETER AMEDZAKE, EI BROWN, UWE HOMMERICH, Hampton University, SUDHIR TRIVEDI, Brimrose Corporation of America, JOHN ZAVADA, US Army Research Office — The infrared optical properties of rare earth doped crystals with narrow phonon spectrum ($< 300 \text{ cm}^{-1}$) remains of current interest for applications in IR solid-state gain media. The maximum phonon energies of KPb₂Cl₅ and KPb_2Br_5 are only $\sim 200 \text{ cm}^{-1}$ and $\sim 150 \text{ cm}^{-1}$, which reduce non-radiative decay through multi-phonon relaxations. In this work, we present spectroscopic results of Dy: KPb₂Cl₅ and Dy: KPb₂Br₅ for possible applications in mid-infrared gain media. The investigated materials were grown by horizontal and vertical Bridgman technique. Dy: KPb₂Cl₅ and Dy: KPb₂Br₅ exhibited characteristic Dy³⁺ absorption bands in the visible and infrared regions. Optical excitation at ~ 800 nm resulted in the observation of a broad 4-5 μ m mid-IR emission ($^{6}H_{11/2} \rightarrow ^{6}H_{13/2}$) at room temperature. The mid-IR emission lifetime was measured to be ~ 5.5 ms for Dy: KPb₂Cl₅ and ∼3.8 ms for Dy: KPb₂Br₅, respectively. Based on temperature dependent lifetime studies and Judd-Ofelt calculations, the emission quantum efficiencies for the 4-5 μ m bands were estimated to be near unity. More details on the IR optical properties of Dy: KPb₂Cl₅ and Dy: KPb₂Br₅will be presented at the conference.

> Ei Brown Hampton University

Date submitted: 27 Nov 2007 Electronic form version 1.4