Angular Dependent Magnetic Properties of CeCoIn$_5$ at Low Temperatures

J.-H. PARK, R.L. STILLWELL2, T.P. MURPHY, E.C. PALM, S.W. TOZER, NHMFL, Florida State University, Tallahassee, FL 32310, J.C. COOLEY, LANL, MST-6, Los Alamos, NM 87545 — The heavy-fermion compound CeCoIn$_5$ exhibits a superconducting transition at 2.3 K. As an unconventional superconductor, many unusual physical properties of the compound have been actively studied. In particular, evidence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state in this compound was reported first by Radovan and co-workers.† At the lowest temperature (∼20 mK), the FFLO state of CeCoIn$_5$ was observed in fields between 10 and 11.7 T when the ab-plane of the compound was placed parallel to the external magnetic field. In addition, at these low temperatures, the angular dependent peak effect was observed and interpreted as a crossover between Abrikosov and Josephson vortex lattices.‡ Further experimental studies of the low temperature (>12 mK) magnetic properties of CeCoIn$_5$, performed in various sample orientations with respect to magnetic field will be presented. †H.A. Radovan, et al., Nature 425 (2003) 51. ‡H.A. Radovan, et al., Philosophical Magazine 86 (2006) 3569.

1This work was partially supported by NSF-DMR-0084173, DOE-DE-FG52-06NA26198, and IHRP in NHMFL.

2Department of Physics, Florida State University, Tallahassee, FL 32310

Ju-Hyun Park

NHMFL, Florida State University, Tallahassee, FL 32310

Date submitted: 27 Nov 2007

Electronic form version 1.4