Evolution of Vortex Phase diagram in heavy ion irradiated YBCO

R. XIE, A. RYDH, U. WELP, W.-K. KWOK, Material Science Division, Argonne National Laboratory, M.R. ESKILDSEN, Department of Physics, University of Notre Dame, LISA PAULIUS, Department of Physics, Western Michigan University — We present a systematic study of the effect of columnar defects induced by heavy ion irradiation on the vortex phase diagram of single-crystal YB2Cu3O7 using ac-specific heat measurements obtained with a micro-calorimeter. The first order vortex melting line where the vortex lattice transforms into a vortex liquid at intermediate magnetic fields is tracked by the peak in the specific heat. In our pristine untwinned YBCO crystal, the vortex melting line extends from a lower critical point $H_{clp}=0.2T$ to an upper critical point $H_{upc}>6T$. The crystal was cleaved into several pieces and then irradiated along the c-axis with 1.4GeV Pb ions with different dose matching fields, B_Φ ranging from 100G to 3000G. We explored the behavior of H_{upc} and H_{clp} in the presence of increasing columnar defects to determine whether the transformation of the first order melting line to higher order occurs abruptly at a defect threshold value or continuously with increasing amount of defects.

1This work was supported by the U.S. Department of Energy, Office of Science, BES - Materials Science and Division of Nuclear Physics (ATLAS) under grant no. W-31-109-ENG-38.
2current address: Department of Physics, Stockholm University