Abstract Submitted for the MAR08 Meeting of The American Physical Society

Critical Properties of the Unconventional Spin-Peierls System **TiOBr** J.P. CLANCY, B.D. GAULIN, Department of Physics and Astronomy, Mc-Master University, F.C. CHOU, Center for Condensed Matter Sciences, National Taiwan University — TiOBr is one of only three inorganic compounds which have been shown to undergo a spin-Peierls (SP) transition, developing a dimerized singlet ground state at low temperatures. However, unlike conventional SP systems, TiOBr exhibits not one, but two successive phase transitions: a continuous transition to an incommensurate SP state at $T_{c2} \sim 48$ K, followed by a discontinuous transition to a commensurate SP state at $T_{c1} \sim 27$ K. We have performed x-ray diffraction measurements on single crystal TiOBr, and carried out a detailed analysis of the critical exponent β near T_{c2}. Our results yield a transition temperature of T_{c2}=47.85(5)K and an exponent of $\beta = 0.30(3)$. This value is consistent with conventional 3D Isinglike behavior (β =0.326), and closely compares to the exponent reported for CuGeO₃ $(\beta = 0.36(3))$ [1], the canonical inorganic SP system. In contrast with measurements performed on isostructural TiOCl [2], we observe no evidence of commensurate dimerization fluctuations in either the incommensurate SP phase $(T_{c1} < T < T_{c2})$ or the so-called pseudogap phase ($T_{c2} < T < T^* \sim 100-150$ K). Furthermore, the incommensurate scattering between T_{c1} and T_{c2} appears to be shifted in Q-space relative to the commensurate scattering below T_{c1} . [1] M.D. Lumsden et al., PRL 76, 4919 (1996). [2] J.P. Clancy et al., PRB **75**, 100401(R) (2007).

> Patrick Clancy Department of Physics and Astronomy, McMaster University

Date submitted: 27 Nov 2007

Electronic form version 1.4