Spectral Properties of Plutonium and its Compounds

JIAN-XIN ZHU, Los Alamos National Laboratory, A.K. MCMAHAN, Lawrence Livermore National Laboratory, M.D. JONES, University at Buffalo, SUNY, T. DURAKIEWICZ, J.J. JOYCE, J.M. WILLS, R.C. ALBERS, Los Alamos National Laboratory — By combining the local density approximation (LDA) with dynamical mean field theory (DMFT), we analyze the spectral properties of plutonium and its compounds. The LDA Hamiltonian is extracted either from a tight-binding fit to full-potential linearized augmented plane-wave calculations, or directly from the full-potential linearized muffin tin orbitals calculations. The DMFT equations are solved by the exact quantum Monte Carlo method complemented with the Hubbard-I approximation. We compare the 5f electron behaviors in Pu elemental solid and compounds. The theoretical results will also be discussed in the context of photoemission spectroscopy data.

1We acknowledge the support of the US DOE at LANL under Contract No. DE-AC52-06NA25396, and at LLNL under Contract No. W-7405-Eng-48.

Jian-Xin Zhu
Los Alamos National Laboratory

Date submitted: 11 Dec 2007