Field Dependence of the Magnetic Roughness of CoFe(B)/MgO.

YVES IDZERDA, JOE DVORAK, EZANA NEGUSSE, ALEX LUSSIER, Montana State University, S.R. SHINDE, Y. NAGAMINE, S. FURUKAWA, K. TSUNEKAWA, D.D. DJAYAPRAWIRA, Canon-ANELVA Corporation — We have measured the field dependent roughness of the magnetic interface of CoFe and CoFeB films covered by MgO by using diffuse X-ray resonant magnetic scattering (diffuse-XRMS) of circular polarized light. The samples studied were 3.0 nm of either a Co(70)Fe(30) or a Co(60)Fe(20)B(20) film covered by 1.8 nm MgO created by UHV sputtering system (ANELVA C-7100). By comparing the specular scattering map and the diffuse scattering map for a large range of incidence angles for photons resonantly tuned near the Co L3-edge as the applied magnetic field is swept through the coercive field, we have determined the chemical and magnetic roughness as a function of applied field. For the CoFe films, the magnetic scattering of the X-rays increases significantly as the film passes through the coercive field where the magnetic in-plane correlations are relatively short range, indicating the presence of small magnetic domains during moment reversal. For the CoFeB films, there is no significant increase in magnetic scattering at the coercive field, consistent with large domain switching.

1This work supported by the Office of Naval Research.

Yves Idzerda
Montana State University

Date submitted: 27 Nov 2007