Bi-layer 3He: a simple two dimensional heavy fermion system with quantum criticality

JOHN SAUNDERS, Royal Holloway University of London

Two dimensional helium films provide simple model systems for the investigation of quantum phase transitions in two dimensions. Monolayer 3He absorbed on graphite, with various pre-platings, behaves as a two dimensional Mott-Hubbard system, complete with a density driven “metal-insulator” transition [1, 2] into what appears to be a gapless spin-liquid. In two dimensions the corrections to the temperature dependence of the fluid heat capacity, beyond the term linear in T, are anomalous and attributed to quasi-1D scattering [3]. On the other hand, bi-layer 3He films adsorbed on the surface of graphite show evidence of two-band heavy-fermion behavior and quantum criticality [4, 5]. The relevant control parameter is the total density of the 3He film. The 3He bilayer system can be driven toward a quantum critical point (QCP) at which the effective mass appears to diverge, the effective inter-band hybridization vanishes, and a local moment state appears. A theoretical model in terms of a “Kondo breakdown selective Mott transition” has recently been suggested [6]. * In collaboration with: A Casey, M Neumann, J Nyeki, B Cowan.

1Supported by EPSRC (UK) GR/S20567/0.