In-situ vacuum studies of photocatalytic oxidation of isopropanol on nanometer thick TiO$_2$ films grown on silicon

D. KAZAZIS, Brown Univ, Providence, RI, S. GUHA1, N.A. BOJARCZUK, IBM T.J. Watson Research Center, Yorktown Heights, NY, H.-C. KIM, IBM Almaden Research Center, San Jose, CA, A. ZASLAVSKY, Brown Univ, Providence, RI — We report on measurements of the photocatalytic activity of ultra-thin TiO$_2$ films grown on n and p type Si wafers. Using the oxidation of isopropanol to acetone as a model system, photocatalytic studies were carried out in-situ, in a high vacuum chamber equipped with leak valves for injecting isopropanol, oxygen and water vapor onto the TiO$_2$ sample. The sample was irradiated through a quartz widow with a UV strobe light source. The reaction was monitored with a line-of-sight mass spectrometer coupled to a lock-in amplifier tuned to the strobe frequency. We find that the photocatalytic efficiency is enhanced as the TiO$_2$ thickness is reduced from 50\textit{nm} to 2\textit{nm}. We also find that the efficiency is enhanced by lowering the substrate Fermi level in going from n type to p type Si. The results strongly point to the hypothesis that only near surface electron-hole pair generation is relevant to the photocatalytic process; and that the reaction rate can be controlled by varying the substrate Fermi level which in turn changes the electrostatic potential variation within the heterostructure.

1to whom enquiries should be addressed

Dimitrios Kazazis
Div. of Engineering, Brown University, Providence, RI

Date submitted: 04 Dec 2007 Electronic form version 1.4