Different magnetic moment in Mn-doped amorphous group-IV semiconductors: a comparison study between Si and Ge matrices.1 LI ZENG, ERIK HELGREN, University of California, Berkeley, CINTHIA PIAMONTEZE, ELKE ARENHOLZ, ALS, Lawrence Berkeley Lab, Berkeley, CA, ADDISON HUEGEL, FRANCES HELLMAN, University of California, Berkeley — Mn-doped amorphous Si (a-Si) and Ge (a-Ge) are prepared by e-beam co-evaporation for a wide range of concentrations (0.5-18 at.\%) to explore the Mn local moment in group-IV semiconductors. We find that Mn behaves quite differently in these two matrices: in a-Si, the Mn local moment is quenched, even for the lowest doping (0.5 at.%), while in a-Ge, a large Mn moment is observed, with a spin-glass ground state. X-ray absorption spectra (XAS) of a-Mn$_x$Si$_{1-x}$ have very broad L-edge absorption peaks which correlate with the quenched magnetic state. The quenched Mn moment in a-Si is unexpected and can be understood by the formation of Anderson-localized itinerant states even on the insulating side of the metal-insulator transition. By contrast, XAS of a-Mn$_x$Ge$_{1-x}$ show atomic multiplets. a-Mn$_x$Si$_{1-x}$ has positive magnetoresistance (MR) like typical non-magnetic disordered electronic systems, while a-Mn$_x$Ge$_{1-x}$ has negative MR, consistent with magnetization data.

1This research was supported by NSF DMR-0505524.

Li Zeng
University of California, Berkeley

Date submitted: 08 Jan 2008

Electronic form version 1.4