Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Random Fields and the Partially Paramagnetic State of CsCo$_{0.83}$Mg$_{0.17}$Br$_3$

JOHN-PAUL CASTELLAN, Argonne National Lab., MSD,
B.D. GAULIN, McMaster University, W.J.L. BUYERS, NPMR, NRC, Chalk River
Laboratories — Partially paramagnetic Neel states are among the exotic magnet
states known to exist in nature as a consequence of geometrical frustration. This
unusual magnetic structure occurs in the stacked triangular lattice antiferromagnets such as CsCoBr$_3$ and CsCoCl$_3$. CsCoBr$_3$ displays at least 2 magnetic phase
transitions. The first, $T_{n1} \sim$28K where the system enters a 3-sublattice state in
which one of the sublattices remains disordered and the second, $T_{n2} \sim$13K where the
remaining disordered sublattice orders[1]. Critical neutron scattering measurements
were performed on the doped system CsCo$_{(1-x)}$Mg$_{(x)}$Br$_3$ with $x =0.17$. We will
discuss the evolution of the observed two component scattering below T_{n1} in terms
of a Random Field Ising model in both zero applied magnetic field and an applied
(2002).

John-Paul Castellan
Argonne National Lab., MSD

Date submitted: 04 Dec 2007
Electronic form version 1.4