Binary memory switching in zigzag-edge graphene nanostrips

DANIEL GUNLYCKE, Naval Research Laboratory, DENIS A. ARESHKIN, George Washington University, JOHN W. MINTMIRE, JUNWEN LI, Oklahoma State University, CARTER T. WHITE, Naval Research Laboratory — Owing to a peculiar boundary condition, the ground state of any hydrogen-terminated zigzag-edge graphene nanostrip is predicted to exhibit spin-polarized edge states. We capture this physics in a model which has a Hamiltonian that consists of tight-binding terms and terms describing the potential from a spin-dependent scalar field. The model is solved in the presence of a ballistic current passing through the nanostrip. Studying the grand canonical potential for the system, it is shown that the spin-polarized state collapses above a certain bias. Below that threshold there is a bi-stable regime which could be exploited in a possible memory device. The memory could be both set and cleared through the bias and be read by measuring the current through the device.

1This work was supported by the NRC and ONR through NRL, and at OSU by the DOE EPSCoR program.