A Hexagonal Lattice Ion Trap for Quantum Simulation of Spin Models

ZILIANG LIN, ROBERT CLARK, YUFEI GE, ISAAC CHUANG, Massachusetts Institute of Technology, PLANAR LATTICE TRAP TEAM — Quantum simulations of one-dimensional spin systems are being implemented by ions in linear Paul traps; however, a natural extension to two-dimensional quantum spin simulations cannot be realized in the linear Paul trap geometry. Planar lattice traps not only offer the possibility for two-dimensional simulations, but also hold two advantages over linear traps: first, neighboring ions in lattice traps have well defined and uniform spacings; second, quantum simulations with planar traps can be scaled up more easily than with linear traps. We develop a hexagonal lattice trap that allows vibrational coupling between ions due to their Coulomb repulsion, which is essential for effective spin-spin interaction. We present fabrication details, preliminary testing results, and a proposal for simulating geometrical spin frustration with three ions in a triangular configuration.