Superconducting Vortices in CeCoIn\textsubscript{5}: Beyond the Abrikosov-Ginzburg-Landau Paradigm

A. D. Bianchi, Dép. de physique, U. de Montréal, Montréal, QC, Canada, M. Kenzelmann, J. Mesot, M. Zollerker, J. Kohlbrecher, LNS, ETHZ & PSI, PSI, Switzerland, L. Debeer-Schmitt, M. R. Eskildsen, Dept. of Physics, U. of Notre Dame, Notre Dame, IL, USA, J. S. White, E. M. Forgan, School of Phys. and Astro., U. of Birmingham, Birmingham, UK, Z. Fisk, Dept. Phys. & Astro., UC Irvine, Irvine, CA, USA, R. Movshovich, E. D. Bauer, J. L. Sarrao, MPA-10, LANL, Los Alamos, NM, USA, C. Petrovic, Cond. Matt. Phys., BNL, Upton, NY 11973, USA — We report on the magnetic field (\mathbf{H}) dependence of the form factor $|F|^2$ of the vortex lattice (VL) in CeCoIn\textsubscript{5} obtained by small angle neutron scattering for \mathbf{H} applied along the crystallographic c-axis. Superconductivity (SC) in CeCoIn\textsubscript{5} has several unconventional aspects to it: The d-wave SC is in competition with antiferromagnetic order, as suggested by the presence of a magnetic QCP located at the upper critical field H_{c2} determined by the Pauli effect. At both 50 and 500 mK we observe an H-independent $|F|^2$ up to 2 T. With further increasing H, $|F|^2$ continues to increase all the way up to H_{c2}. This finding is in contrast to that normally observed in type-II SC's, where $|F|^2$ decreases with increasing H. It suggests a departure from the Abrikosov-Ginzburg-Landau paradigm, where the properties of the vortex state can be described by the coherence length ξ, and the penetration depth λ.

Andrea Bianchi
Dép. de physique, U. de Montréal, Montréal, QC, Canada