Abstract Submitted for the MAR08 Meeting of The American Physical Society

Mid-infrared Emission and Energy Transfer Properties of Sensitized Rare Earth Ions in KPb₂Cl₅ ALTHEA BLUIETT, ERICA PINKNEY, Elizabeth City State University, EI BROWN, UWE HOMMERICH, Hampton University, SUDHIR TRIVEDI, Brimrose Corporation of America, JOHN ZAVADA, US Army Research Office — Mid-infrared emission (4-5 μ m) originating from the first excited state of Pr³⁺ and from the first excited state of Nd³⁺ were generated by means of Yb³⁺ and Tm³⁺ sensitization, respectively. The mechanisms involved in sensitizing Pr³⁺ and Nd³⁺ions were determined by studying the decay kinetics of the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition of Yb³⁺ and the ${}^3F_4 \rightarrow {}^3H_6$ transition of Tm³⁺ under 970 nm and 1750 nm laser excitation, respectively. It was observed that the emission lifetime of the ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ transition and the ${}^3F_4 \rightarrow {}^3H_6$ transition were reduced considerably in the presence of the activator ions Pr³⁺ and Nd³⁺, respectively. Strong 4-5 μ m emission from Pr³⁺ and Nd³⁺were observed in Yb, Pr: KPb₂Cl₅ and Tm, Nd:KPb₂Cl₅, respectively. These findings indicate that significant energy transfer was transpired. Concentration dependent studies will be conducted to ascertain the dopant concentrations for efficient MIR emission.

Ei Brown Hampton University

Date submitted: 27 Nov 2007 Electronic form version 1.4