Understanding the Protected Nodes and the Fermi Arcs in the Cuprate Superconductors

QIJIN CHEN, K. LEVIN, University of Chicago —
We address a recent analysis of photoemission data which elucidates the superconducting phase of the underdoped cuprates. We first present a simple phenomenological approach to the spectral function which shows how the d-wave order parameter symmetry results in protected nodes, which, above T_c broaden into Fermi arcs; this “protection” is associated with superconducting coherence rather than reduced thermal broadening. A microscopic theory, consistent with this phenomenology, is presented. It reconciles the observations that the excitation gap below T_c is temperature independent while the superfluid density necessarily vanishes at T_c.

1 This work was supported by NSF Grants No. PHY-0555325 and No. MRSEC DMR-0213745.